Deep Age Estimation: From Classification to Ranking

نویسندگان

  • Shixing Chen
  • Caojin Zhang
  • Ming Dong
چکیده

Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial imagebased age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a set of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. From a theoretical perspective, we obtain an approximation for the final ranking error, show it is controlled by the maximum error produced among sub-ranking problems, and thus find a new error bound, which provides helpful guidance for the training and analysis of deep rankers. Based on the new error bound, we theoretically give an explicit formula for the learning of ranking-CNN and demonstrate its convergence using stochastic approximation method. Moreover, we rigorously prove that ranking-CNN, by considering ordinal relation between ages, is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that ranking-CNN outperforms other stateof-the-art feature extractors and age estimators on benchmark datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

A new classification method based on pairwise SVM for facial age estimation

This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Automatic Age Estimation from Face Images via Deep Ranking

This paper focuses on automatic age estimation (AAE) from face images, which amounts to determining the exact age or age group of a face image according to features from faces. Although great effort has been devoted to AAE [1, 4, 6], it remains a challenging problem. The difficulties are due to large facial appearance variations resulting from a number of factors, e.g., aging and facial express...

متن کامل

Ranking bias in deep web size estimation using capture recapture method

Many deep web data sources are ranked data sources, i.e., they rank the matched documents and return at most the top k number of results even though there are more than k documents matching the query. While estimating the size of such ranked deep web data source, it is well known that there is a ranking bias– the traditional methods tend to underestimate the size when queries overflow ( match m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017